Structure learning of probabilistic logic programs by searching the clause space
نویسندگان
چکیده
Learning probabilistic logic programming languages is receiving an increasing attention and systems are available for learning the parameters (PRISM, LeProbLog, LFI-ProbLog and EMBLEM) or both the structure and the parameters (SEM-CP-logic and SLIPCASE) of these languages. In this paper we present the algorithm SLIPCOVER for “Structure LearnIng of Probabilistic logic programs by searChing OVER the clause space”. It performs a beam search in the space of probabilistic clauses and a greedy search in the space of theories, using the log likelihood of the data as the guiding heuristics. To estimate the log likelihood SLIPCOVER performs Expectation Maximization with EMBLEM. The algorithm has been tested on five real world datasets and compared with SLIPCASE, SEM-CP-logic, Aleph and two algorithms for learning Markov Logic Networks (Learning using Structural Motifs (LSM) and ALEPH++ExactL1). SLIPCOVER achieves higher areas under the precision-recall and ROC curves in most cases.
منابع مشابه
Towards Learning Stochastic Logic Programs from Proof-Banks
Stochastic logic programs combine ideas from probabilistic grammars with the expressive power of definite clause logic; as such they can be considered as an extension of probabilistic context-free grammars. Motivated by an analogy with learning tree-bank grammars, we study how to learn stochastic logic programs from proof-trees. Using proof-trees as examples imposes strong logical constraints o...
متن کاملLearning a generative failure-free PRISM clause
PRISM is a probabilistic logic programming formalism which allows learning parameters from examples through its graphical EM algorithm. PRISM is aimed at modelling generative processes in the compact first-order logic representation. It facilitates model selection by providing three scoring functions Bayesian Information Criterion (BIC), Cheeseman-Stutz (CS) and Variational free energy. This pa...
متن کاملParameter and Structure Learning Algorithms for Statistical Relational Learning
My research activity focuses on the field of Machine Learning. Two key challenges in most machine learning applications are uncertainty and complexity. The standard framework for handling uncertainty is probability, for complexity is first-order logic. Thus we would like to be able to learn and perform inference in representation languages that combine the two. This is the focus of the field of...
متن کاملSpeeding Up Inference for Probabilistic Logic Programs
Probabilistic Logic Programming (PLP) allows to represent domains containing many entities connected by uncertain relations and has many applications in particular in Machine Learning. PITA is a PLP algorithm for computing the probability of queries that exploits tabling, answer subsumption and Binary Decision Diagrams (BDDs). PITA does not impose any restriction on the programs. Other algorith...
متن کاملLogic Programs with Annotated Disjunctions
Current literature offers a number of different approaches to what could generally be called “probabilistic logic programming”. These are usually based on Horn clauses. Here, we introduce a new formalism, Logic Programs with Annotated Disjunctions, based on disjunctive logic programs. In this formalism, each of the disjuncts in the head of a clause is annotated with a probability. Viewing such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- TPLP
دوره 15 شماره
صفحات -
تاریخ انتشار 2015